

Data Sheet

Customer:	
Part No:	CL-SP0201DLG-02
Sample No:	
Description:	0603 SMD Green Color
Item No:	

Customer				
Check Inspection Approval Date				

Features

- .0201 package
- .Top view LED
- .Compatible with infrared and vapor phase reflow solder process.
- .Pb-free
- .RoHS compliant

Description

- . The Ciellight 0201 package has high efficacy, high power consumption, wide viewing angle and a compact form factor.
 - .These features make this package an ideal LED for all lighting applications.

Applications

- .General lighting
- .Decorative and Entertainment Lighting
- .Indicators
- .Automotive Telecommunication
- .Switch lights

Device Selection Guide

Chip Material	Emitted Color	Resin Color
AlGaInP	Brilliant Green	Water Clear

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Continuous Forward Current	I_{F}	25	mA
Operating Temperature	T_{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
Peak Forward Current (Duty 1/10@1ms)	I_{FP}	60	mA
Soldering Temperature* ¹	$T_{\rm sol}$	Reflow Soldering : 260 °C	for 10 sec.
Soldering Temperature	1 sol	Hand Soldering: 350 °C	for 3 sec.
Power Dissipation at(or below)	D	05	
25°CFree Air Temperature	P _d	95	mW
Electrostatic Discharge(HBM)	ESD	2000	V

Notes: *1: Soldering time≦5 seconds

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	2.8		3.3	V	I _F =20mA
Reverse Current	I_R			10	μΑ	V _R =5V
Luminous Intensity	Iv	300		600	mcd	I _F =20mA
Viewing Angle	$2\theta_{1/2}$		120		deg	I _F =20mA

Notes:

- 1. Tolerance of Luminous Intensity $\pm 10\%$.
- 2. Tolerance of Forward Voltage: ± 0.05 V.

Bin Range of Luminous Intensity

Bin Code	Min	Max	Unit	Condition
G1	300	400		
G2	400	500	mcd	$I_F=20mA$
G3	500	600		

Note:

Tolerance of Luminous Intensity: $\pm 10\%$.

Bin Range of Forward Voltage

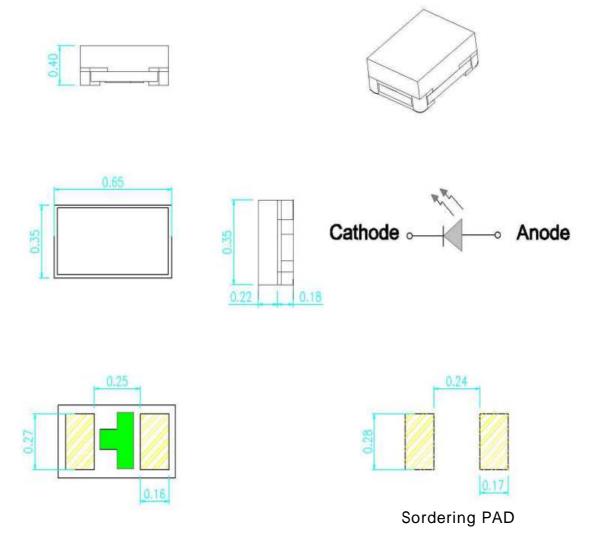
Bin Code	Min	Max	Unit	Condition
1	2.8	2.9	_	
2	2.9	3.0		
3	3.0	3.1	V	$I_F=20mA$
4	3.1	3.2	_	
5	3.2	3.3	_	

Note:

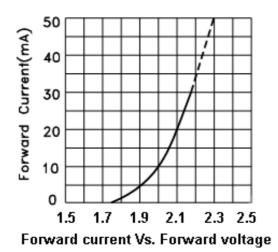
Tolerance of Forward Voltage: ± 0.05 V.

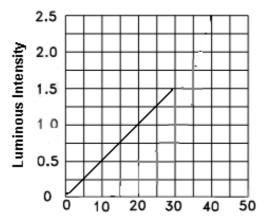
Bin Range of Dominant Wavelength

Bin Code	Min	Max	Unit	Condition
G1	522	524	-	
G2	524	526		I _F =20mA
G3	526	528	nm	IF=20IIIA
G4	528	530		

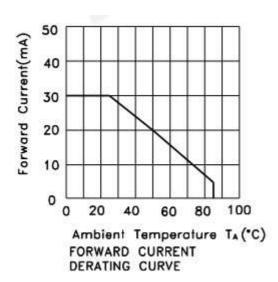

Note:

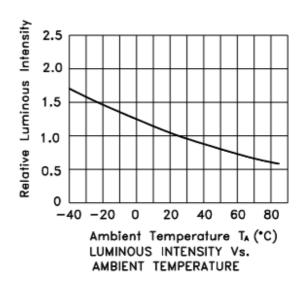
Tolerance of Dominant Wavelength: ±1nm.

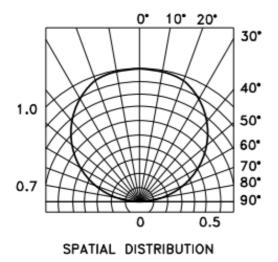

Package Dimensions

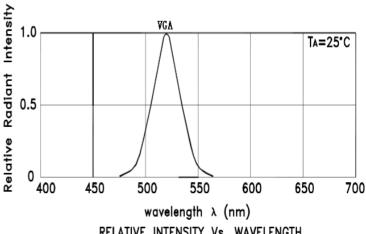


Note: Tolerance unless mentioned is ± 0.1 mm, Unit = mm.









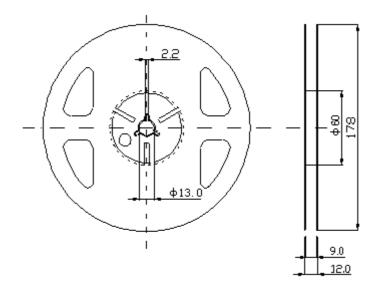
Luminous Intensity Vs. Forward current

RELATIVE INTENSITY Vs. WAVELENGTH

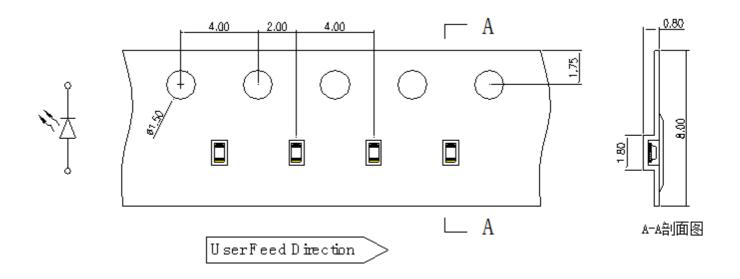
Label Form Specification

CPN: Customer's Production Number

P/N : Production Number QTY: Packing Quantity

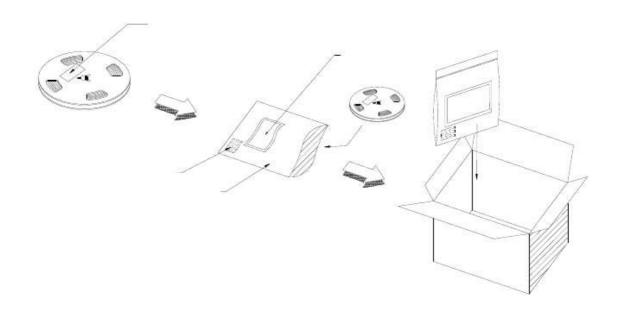

CAT: Ranks

HUE: Peak Wavelength


REF: Reference

LOT No: Lot Number

Reel Dimensions


Note: The tolerances unless mentioned is ± 0.1 mm, Unit = mm

Moisture Resistant Packing Process

Reliability Test Items and Conditions

The reliability of products shall be satisfied with items listed below.

Confidence level: 90%

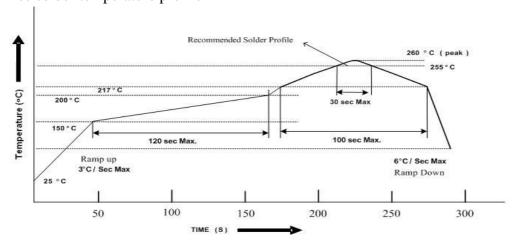
LTPD: 10%

No.	Items	Test Condition	Test Hours/Cycles	Sample Size	Ac/Re
1	Reflow Soldering	Temp.: 260°C/10sec.	6 Min	22 PCS	0/1
2	Thermal Shock	H: +100°C 5min ∫ 10 sec L: -10°C 5min	300 Cycles	22 PCS	0/1
3	Temperature Cycle	H: +100°C 15min ∫ 5 min L: -40°C 15min	300 Cycles	22 PCS	0/1
4	High Temperature/Humidity Reverse Bias	Ta=85°C,85%RH	1000 Hrs.	22 PCS	0/1
5	Low Temperature Storage	Ta=-40°C	1000 Hrs.	22 PCS	0/1
6	High Temperature Storage	Ta=100°C	1000 Hrs.	22 PCS	0/1
7	DC Operation Life	Ta=25°C IF = 20 mA	1000 Hrs.	22 PCS	0/1

Precautions For Use

1. Over-current-proof

Customer must apply resistors for protection , otherwise slight voltage shift will cause big current change (Burn out will happen).



2. Storage

- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package, the LEDs should be kept at 40°C or less and 90%RH or less.
- 2.3 The LEDs should be used within a year.
- 2.4 After opening the package, the LEDs should be kept at 30°C or less and 60%RH or less.
- 2.5 The LEDs should be used within 168 hours (7 days) after opening the package
- 2.6 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following J-STD-33 Standard.

3. Soldering Condition

3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.

4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.