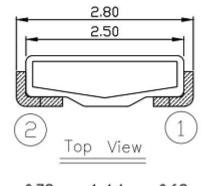
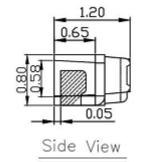
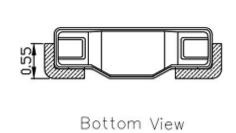
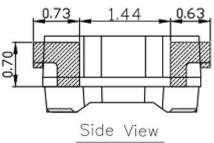


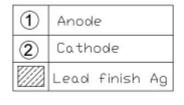
Data Sheet

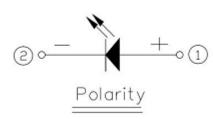

Customer:	
Part No:	CL-SP2808DNB-02
Sample No:	
Description:	2808 SMD Blue Color
Item No:	

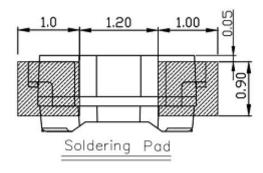

Customer			
Check	Inspection	Approval	Date






Package Dimensions





Recommended Soldering Patter

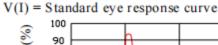
NO TES:

- All dimensions are in millimeters
- 1, 2, Tolerances are ± 0.1 mm unless otherwise note.

Absolute maximum ratings		(Ta=25°C)			
Parameter	Symbol	Value	Unit		
Forward current	If	30	mA		
Reverse voltage	Vr	5	V		
Power dissipation	Pd	90	mW		
Operating temperature range	Тор	-40~+85	°C		
Storage temperature range	Tstg	-40~+100	°C		
Peak pulsing current (1/8 duty f=1KHz)	Ifp	80	mA		
Junction Temperature	Tj	115	°C		
Electrostatic Discharge(HBM)	ESD	2000	V		

Electro-Optical characteristics

 $(TA=25^{\circ}C)$


Parameter	Test Condition	Symbol	Color	Value			Unit
				Min	Тур	Max	Omt
Color Temperature	I _F =20mA	ССТ	В			-1	K
Forward voltage	I _F =20mA	Vf	В	2.8		3.4	V
luminous flux	I _F =20mA	φ	В	300		800	mcd
Viewing angle at 50% IV	I _F =20mA	201/2	В		120	1	Deg
Dominant wavelength	I _F =20mA	λd	В	465		474	nm
Reverse current	Vr=5V	Ir	В		5		μΑ
Color Rendering Index	I _F =20mA	CRI	В				Ra

Typical photo-electricity characteristic curve chart

Relative Spectrum Emission Irel = f(I), TA = 25°C, IF = 20 mA

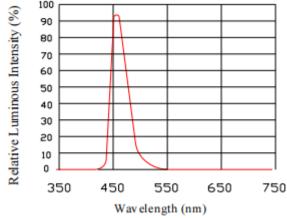
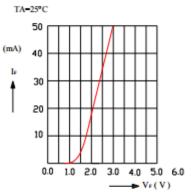
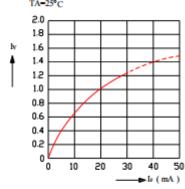
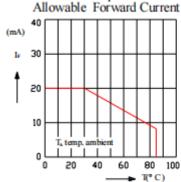



FIG.1 RELATIVE LUMINOUS INTERSITY


Forward Current $I_F = f(V_F)$

Forward Voltage (V)

FIG.2 FORWARD CURRENT VS. FORWARD VOLTAGE


Relative Luminous Intensity $I_{V}/I_{V}(20mA) = f(I_{F})$

Forward Curret I_F (mA)

FIG.3 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Ambient Temperature VS.

Ambient Temperature $T_A(^{\circ}C)$ FIG.4 FORWARD CURRENT VS. AMBIENT TEMPERATURE

Radiation Characteristic $I_{rel} = f(q)$

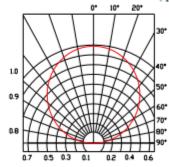


FIG.5 RADIATION DIAGRAM

Test items and results of reliability

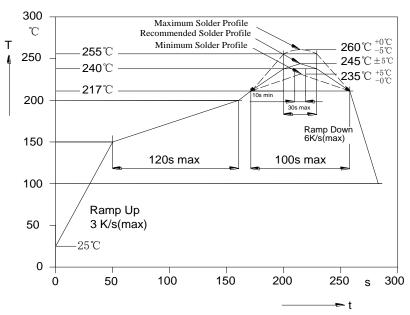
Туре	Test item	JY. Standard	Test Conditions	Note	Quantity	Number of Damaged
tal	Temperature Cycle	JIS C 7021 (1977)A-4	-25°C 30min ↑↓5min 80°C 30min	100 cycle	22	0
	Thermal Shock	MIL-SLD-107D	-25°C 15min		22	0
Environmental Sequence	High Humidity Heat Cycle	JIS C 7021 (1977)A-5	30°C ⟨=⟩ 65°C 90%RH 24hrs/1cycle	10 cycle	22	0
Envi	High Temperature Storage	JIS C 7021 (1977)B-10	T _a =80°C 1000hrs		22	0
	Humidity Heat Storage	JIS C 7021 (1977)B-11	T _a =60°C RH=90%	1000hrs	22	0
	Low Temperature Storage	JIS C 7021 (1977)B-12	$T_a = -30^{\circ}C$	1000hrs	22	0
Operation Sequence	Life Test	JIS C 7035 (1985)	$T_a=25$ °C $I_F=150$ mA	1000hrs	22	0
	High Humidity Heat Life Test	*	60°C RH=90% I _F =150mA	500hrs	22	0
	Low Temperature Life Test	*	Ta=-25°C I _F =150mA	1000hrs	22	0

 $[\]bigstar$ Refer to reliability test standard specification for in this line.

Criteria For Judging Damage

Test Items	Symbol	Test Conditions	Judgement Standard
Forward Voltage	V_{F}	$I_F = I_{FT}$	Initial Data±10%
Reverse Current	I_R	V _R =5V	I _R ≦10μA
Luminous Intensity	I_{V}	$I_F=I_{FT}$	Average I _V degradation $\leq 30\%$ Single LED I _V degradation $\leq 50\%$
Resistance to Soldering Heat			Meterial without internal cracks, no material between stripped, no deaded light.

^{*}The technical information shown in the data sheets are limited to the typical characteristics and circuit examples of the referenced products. It does not constitute the warranting of industrial property nor the granting of any license.



Guideline for Soldering

1. **Reflow Soldering:** Use the conditions shown in the under Figure of Pb-Free Reflow Soldering.

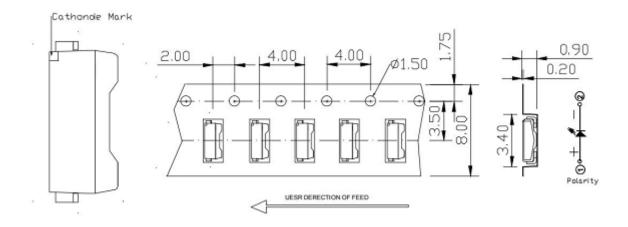
SMD-Reflow Soldering Profile for lead free soldering(Acc.to J-STD-020B)

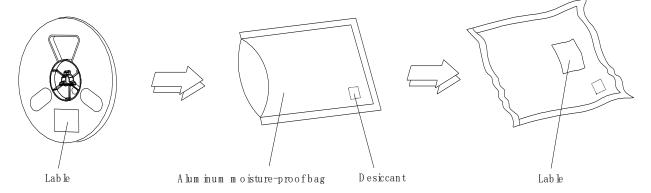
Remark: If not lead free soldering, the recommended solder profile is 230°C and max solder profile is 245°C.

2. Hand Soldering

- 1). A soldering iron of less than 20W is recommended to be used in Hand Soldering Please keep the temperature of the soldering iron under 360°C while soldering Each terminal of the LED is to go for less than 3 second and for onetime only.
- 2). Be careful because the damage of the product is often started at the time of the hand soldering.

3. Cleaning


- 1). It is recommended that alcohol be used as a solvent for cleaning after soldering. Cleaning is to go under 30°C for 3 minutes or 50°C for 30 seconds. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not.
- 2). Ultrasonic cleaning is also an effective way for cleaning. But the influence of Ultrasonic cleaning on LED depends on factors such an ultrasonic power. Generally, the ultrasonic power should not be higher than 300W.Before cleaning, a pre-test should be done to confirm whether any damage to LEDs will occur.

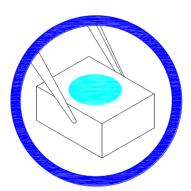


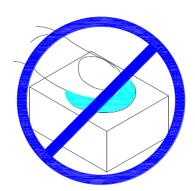
Tape and Packaging

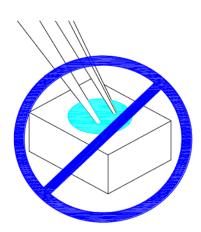
1. Tape leader and reel

2. Moisture Resistant Packaging

3. Cautions

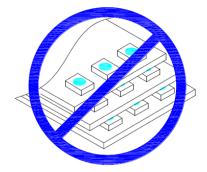

- 1). The encapsulated material of the LEDs is silicone. Therefore the LEDs have a soft surface on the top of package. The pressure to the top surface will be influence to the reliability of the LEDs. Precautions should be taken to avoid the strong pressure on the encapsulated part. So when use the picking up nozzle, the pressure on the silicone resin should be proper.
- 2). The outer diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible. pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.





Handling Precautions

1. Handle the component along the side surface by using forceps or appropriate tools; do not directly touch or Handle the silicone lens surface, it may damage the internal circuitry.



Do not stack together assembled PCBs containing LEDs.

Not suitable to operate in acidic envi-ronment, PH<7

Impact may scratch the silicone lens or damage the internal circuitry

